Series 50 Fetal Monitors

Series 50 A Antepartum Fetal Monitor (M1351A)
Series 50 IP-2 Intrapartum Fetal Monitor (M1353A)
Series 50 | X/XM/XMO Intrapartum Fetal/Maternal Monitor
(M1350 A/B/C)

Digital Interface Protocol Specifications

Programmer’s Guide

PHILIPS

Part Number M 1350-9074S
Published in Germany March 2002

Notice

Philips makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose.
Philips shall not be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

This document contains proprietary information that is protected by copyright. All rights
are reserved. No part of this document may be photocopied, reproduced or translated to
another language without prior written consent of Philips.

The information contained in this document is subject to change without notice.

Philips assumes no responsibility for the use or reliability of its software on equipment that
is not furnished by Philips.

WARNING!

Failure on the part of theresponsibleindividual hospital or institution employing the
use of this equipment to implement a satisfactory maintenance schedule may cause
undue equipment failure and possible health hazards.

Contents

1. Hardwar e Configuration

About ThisGuide.
Introduction
Hardware Configuration
Interface Connections

RS232Interface

RS422 Interface
Communication Summary

2. Fetal Monitor Connection

Introduction
TheDataLink Layer

Special Function Characters.
The ApplicationLayer.................

3. Data Block Overview

Introduction
DataBlock Overview.
DataBlockst
Request DataBlock *?7
CTGDaaBlock‘C'...............

Protocol Revision Change Request ‘V’

Go In Auto Send Mode ‘G’

Halt Automatic CTG Transmission ‘H’

Event Message ‘MM’
Note'N',
Faillures'F
ID-Code‘l" ...,
Maternal (NIBP) ‘P
Maternal Temperature ‘T’
Maternal Oxygen Saturation'S'.
Troubleshooting.
Time Synchronization.

4. The CRC Mechanism

Introduction,
Using achecksum to detect errors.

5. Programming Example

Digital dataexchangeexample

A.Glossaryocoia

.. 10
.. 10
.. 10

Contents-i

Contents-ii

1
Hardware Configuration

About This Guide

Introduction

This Programmer’s Guide describes data exchange between a Series 50 fetal monitor and an
obstetrical information management system, such as OB TraceVue, or aPC. It iswritten
“by a programmer for programmers’ - in other words, in technical language.

The User’s Guide and the Installation and Service Guide for OB TraceVue and the fetal
monitors provide general information on fetal monitoring. For a brief explanation of some
of the medical terms used in this Guide, see the Glossary on page A - 1.

This chapter explains what hardware you need for digital information transmission between
the fetal monitor and the host system.

Using the digital interface allows you to access the following digital information from the
fetal monitor:

= Fetal Heart Rate (FHR 1 and FHR 2 if monitoring twins)

= Materna Heart Rate

= Fetal Movement Profile

= Fetal SpO, using M1350C (or M1351A/53A and M1350A/B if a Nellcor OxiFirstO
Fetal Oxygen Saturation Monitor (N-400) is connected)

s Toco/lUPVaue

= Noninvasive Blood Pressure

= Heart Rate Modes

s Toco/lUP Modes

= Maternal Blood Pressure

= Materna SpO,

s Maternal Temperature

s Event Marks

= Nursing Notes from the Barcode Reader.

It also allows you to send nursing notes from the host system (for example OB TraceVue)
to the fetal monitor.

Hardwar e Configuration 1

Hardware Configuration

Hardware Configuration

The hardware configuration you will need for data exchange between a Series 50 fetal
monitor and a PC is shown in Table 1-1:

Table 1-1
Fetal Monitor Side Cable PC/System
M 1350A/B/C Fetal Monitor! Useprefabricated cable | Host System, for

Optiona System Interface Board
(Option #J10, #12)

M1380-61612 (RS232)
(or see wiring diagram
in this document)

M1351A/M1353A Fetal Monitor?
Optiona System Interface Board
(Option #J10, #13, #14)

Use prefabricated cable
M1380-61613 (RS232)
(or see wiring diagram
in this document)

example OB Trace-
Vue, with an RS232
or R$422 interface
board (see the Instal-
lation and Service
Guide for the fetal
monitor for detailson
the interface boards)

1. M1350 A/B/C Fetal Monitor must have firmware M 1350-6801G or upwards (e.g. M 1350-6801H) for

digital communication and Rev C or later to measure FSpO,.
2. All M1351A/M1353A Fetal Monitors have the necessary firmware for the digital communication

builtin.

2 Hardware Configuration

Interface Connections

Interface Connections

You can connect a Series 50 fetal monitor to a PC or to an obstetrical information
management system such as OB TraceV ue directly using an RS232 cable. Older models
may communicate indirectly viathe RS422 interface on the fetal monitor. Both connections
are described in the following.

RS232 Interface

M1351A/M1353A The M1351A and M1353A fetal monitors can be connected directly to the OB TraceVue
or other host system or PC using an RS232 connector cable. The link requiresa24 pinto 9
pin adapter cable (you can use the preconfigured adapter cable, M1380-61613). This cable
connects to the fetal monitor with a 24 pin connector (do not use the 9 pin connector!).

OB TraceVue
connection

Figure 1-1 M1351A/M1353A showing connecting cable to OB TraceVue

The pin alocation for the RS232 connecting cable is shown below:

Pin 8 RXD Input 8 O 020
Pin9 TXD Output |9 O O21

110 023
120 O24| Pin 24 Signal Ground
—

Figure 1-2 RS232 Cable Pin Allocation for the M1351A/M1353A to
Host System Connection

Hardwar e Configuration 3

Interface Connections

M1350 A/B/C The RS232 link between the Series 50 A/B/C fetal/maternal monitors
(M1350 A/B/C) and the PC or host system, for example OB TraceVue, usesa9pinto9pin
connection. Thereis a preconfigured cable available (M1380-61612). On the fetal monitor
side it connectsto the Tele/Sys | F port (see Figure 1-5). Figure 1-3 shows the pin allocation
for the connection.

Case chassis for
1 cable shield
T/ connection

5@ |—— RS232 Gnd
@
4 @ |——Data Terminal Ready
Not Connected—1t 8 @

EY Transmit Data
internally - to an Ext Device
Shorted Not Connected—} 7@

Receive Data

@ |—

‘@ from Ext Device

1@ |—Carrier Detect

Figure 1-3 M1350 A/B/C RS232 System Connector Pin Allocation

4 Hardware Configuration

Interface Connections

RS422 Interface

M1351A/M1353A The Series50 fetal monitors can be connected to a host system using the RS422 interface. If

and M1350 A/B/C you are connecting the M1350A or M1351A/M 1353A to a host system or PC you will need
option #J12.

Figure 1-4 shows the location of the RS422 connection on the M 1350 A/B/C fetal monitor.

i

£ ®
TELE/EXT.PAR. C%
®

AN

%

—=—
ImE
NN

MMMMM

RS422 Connection
RS232 Connection

Figure 1-4 M1350 A/B/C Interface Connections

The pin allocation for the RS422 interface signalsis shown in Figure 1-5.

Computer Fetal Monitor

RS422
IN+pin18 O
IN- pin 3 O

[oNe)
N
5 R B

IS
[elojolololojolooloRoXo)

Pin 3 OUT+
Pin 15 OUT-

NE e e e
88ESSE

OUT+ pin 10 O 0
OuT-pin9 O

Pin7 0

Pinl7 IN+
Pin 18 IN-

NOT CONNECTED O pin12GND
Shield

[elejojolojolooloRoJo ool
H g oo ~oa

[eXeJeoJeoJeoJoJoJooNo o o]
BRBRNRBBELE &R

[elejoloojoJooloRoJoXe)

NN NN
RRRR

[ERT. N ~
BEREBO® o o s w e

Figure 1-5 PC to M1350 A/B/C RS422 Cable Connection

Hardware Configuration 5

Communication Summary

Communication Summary

Thefollowing is a summary of the protocol settings and parameters:

= The communication isbased on a serial connection, for example RS232 or RS422,
without handshake signals (uses only TxD/RxD).

= Thebaudrate is 1200 Baud.
= Dataissent using 1 start bit, 8 data bits, and 1 stop bit. No parity is used.

s Datais sent within blocks. These blocks have a CRC-16 code appended to detect
transmission errors.

= If adatablock cannot be received correctly (as detected by the CRC-16 code), it will
not be retransmitted and must be ignored by the receiver.

s When aword value is transmitted, the most significant byte (MSB) is always sent first.

= Unknown data blocks are ignored, thus introducing new data blocks in the future does
not disturb the receiver.

s The maximum response time of the fetal monitor to a request depends on:
s For ID-Code, CTG-Package:
Transfer time of request
+ 250 msec (max.)
+ rest time of an already started block
+ transfer time of the data-package
m For other packages:
Transfer time of request
+ 500 msec (max.)
+ rest time of an already started block

+ transfer time of the data-package

Note Some functionality may not beimplemented in aspecific device (monitor or system). Thisis
independent of the protocol revision.

6 Hardware Configuration

Introduction

2
Fetal Monitor Connection

The Fetal Monitor connection is defined on three Data Protocol layers:
= ThePhysica Layer.

s TheDatalink Layer.

= TheApplication Layer.

This chapter describes the data link and application layers of the connection between the
fetal monitor and the host system. The physical layer is described in Chapter 1.

The Data Link Layer

The datalink layer is responsible for the correct transmission of data blocks. It ensuresthe
datathat is accepted at the receiver is correct. However it does not tell the transmitter that
the datais received correctly.

In order to achieve 8 bit datatransparent transmission, it is necessary to define adatalinkage
escape character (DLE). This DLE character announces that the following byte is a special
block control character. If <DL E> occurs in the data stream, it will be replaced by a

<DL E><DL E> sequence to change the control character meaning to anormal character
value. Neverthel ess, avoid having the <DL E> character sequence asatypical valuein
frequently used data, because that increases the load on the connection.

A data block that isto be sent to the communication partner is surrounded by a block-start
and a block-end. The start block is defined as <DL E><ST X> and the end block is

<DL E><ETX>. Following the block, a 2 byte CCITT CRC-16 code is sent to verify the
total block. For a description of the CRC mechanism see Chapter 4.

Itisexplicitly allowed that datais sent after <DL E><ET X> and before <DL E><ST X> and
that datais discarded by the protocol.

The following rules apply to the data blocks:
= |f the CRC cannot be received correctly, the data block is discarded.

»n |If astart of block isrecognized before an end of block was received, the incomplete
block is discarded and the new block accepted.

Fetal Monitor Connection 7

The Application Layer

<DLE> <STX> ... Block data ... <DLE> <ETX>

<CRC> | <CRC>

Start of Block

Data End of Block

CCITT CRC

Special Function

Table2-1 DataBlock Sructurein thedatalink layer

The second item also means that the transmitter can stop the transmission of a block at

anytime, and start a new block; for example, to send avery

urgent failure message.

Problems can occur if atransmitted message isinterrupted directly after the <DL E><ET X>
seguence, (that is, within the CRC bytes). These bytes are read without interpreting <DL E>
codes. The sender should, therefore, send two arbitrary bytes that do not contain one of the
special characters described in Table 2-2, for example, two zero-bytes. After these two bytes

anew block can be started and will be safely recognized.

It isassumed that datatransmission errors are very rare, therefore, blocksthat areincorrectly

received are not repeated.

Characters

The specia function characters of the Series 50 Digital System Protocol are coded as listed
in Table 2-2. You should avoid using these character sequences in other functions.

Table2-2 Special Function Characters

Character Hex Code Description
<DLE> 10h Datalinkage escape
<STX> 02h Start of text
<ETX> 03h End of text

The Application Layer

The application layer describes the data formats as they should be interpreted by the
applications that communicate with each other. The datais embedded in the structure
described in The Data Link Layer on page 2-7. Generally, a data block has the structure

shown in the following table:

Table2-3 General Data Block Sructure

Data Block Type

Data...

char 0...

511 Byte

8 Fetal Monitor Connection

3
Data Block Overview

Introduction

This chapter provides an overview of the individual data blocks. It also givesyou a detailed
description of each block and tells you how to initiate transmission.

Data Block Overview

Table 3-1 indicates whether adata block can be transmitted from the host system to the fetal
monitor or from the fetal monitor to the host system. (Note: in this table FM=fetal monitor.)

Table3-1 DataBlock Overview (alphabetically sorted)

. Used in direction Avallal_ol_ewnh Comments
Type Function revision

FM->Host | Host->FM | A.01.01 | A.02.00

C CTG DataBlock * * * Be careful in auto

mode!
Failures * * *

G Go (enter auto) * * * Start auto-send CTG
data

H Halt * * * Stop auto-send mode

| ID-code * * * Also sent by FM on
power on

M Message block * * * Event messages, eg.
alarm ack. marker

N Note * * * * Async., both
directions

P NIBP (Blood Pressure) * * * Maternal external BP

S SpO, (oxygen sat.) * * * Maternal oxygen
saturation

T Temperature * * * Materna temperature

\Y, Change protocol version * * Async. request

? Request data * * * Request any of the

messages listed above

Rev. A.02.00 isrequired for FSpO, (M1350C only). See page 17 for more details.

DataBlock Overview 9

Data Blocks

Data Blocks

This section describes the individual data blocks and tells you how to initiate data block
transmission.

Request Data Block “?’

A reguest data block has a question mark ‘? asidentifier and contains only a single byte of
data, which isthe data block that is requested. For example, to request a“C’ type data block,
the sequence <DL E><STX>?C<DL E><ETX><CRC><CRC> is sent. Table 3-2 shows a
list of possible requests.

Note [f the fetal monitor isin auto-send mode (after sending the Go-command), a C data block
request resets the auto-send mode.

Table3-2 List of Possible Data Block Requests (Note: in this table FM=fetal monitor)

Used in direction
Request ID Description
FM ->Host Host->FM
C - * Request new CTG Data
| - * Get the monitor identification

CTG Data Block ‘C’

To receive CTG-data from the fetal monitor, a"CTG-Datareguest code”" needs to be
transmitted to the monitor. The CTG data block is preceded by the C character as the data
block type. It is sent in the following cases:

= Automatically every second from the fetal monitor to the system if the fetal monitor
was set to auto-send mode (See“Go In Auto Send Mode ‘G’ on page 18.).

= Once after a C-Request from the system.

10 DataBlock Overview

The C-datablock is structured as shown in Table 3-3.

Table3-3 C-DataBlock Overview

Data Blocks

Field Bytes Comment
Status 2
HR1 4x2
HR2 4x2
MHR 4x2
Toco 4
HR - Mode 2
Toco - Mode 1
FSpO, value! 1

1. See“Protocol Revision Change Request ‘V'” on page 17.

In the C-data block, theitems HR1, HR2, MHR, and Toco appear 4 times per block because
they are sampled 4 times per second (see Figure 2-1). The oldest sampleis placed as the
first value and the most recent sample as the 4th (last) value of these arrays, (for example,
(HR1[O] is older than HR1[1]). For complete information transfer the next C request must
be made within 900 - 1100 ms.

1 2

byte *high* *low*
byte

high *low*
byte

Figure 2-1 C-Data Block Outline

C-Block Status The statusfield contains information about:

Word

s Offsets.

The status of the current C-data block (validity bits)

Feta Movement Profile

2 1
CO N

high *low*
te

by

The status of the fetal monitor (telementry on/off, coincidence recognized)

No of bytes

byte

Data Block Overview 11

Data Blocks

Table 3-4 shows the coding of the C-Block status word.

Table3-4 C-Block statusword contents

Bit no. Usage
7/6 (543|210 7|6|5/4]3|2]1]0
X X X|1O0| X | X | X[X|X[X|X]O0O|X|X|X|X
0 FMP disabled
1 FMP enabled

0 | HR1 twin offset not active

1 | HR1twin offset active (+20bpm)

0 | Reserved (zero)

0 | Not used - currently set to zero

0 | Reserved (zeroto avoid <DLE>)

0 | DECG logic off

1 | DECG logicon

0 | Reserved

0 | Reserved (zero)

0 | HR Cross Channel Verification not detected

1 | HR Cross Channel Verification detected

0 | Telemetry off

1 | Telemetry on

0 Reserved

1 Reserved

0 FSpO,, not available (rev. A.02.00 or higher)

1 FSpO, available (rev. A.02.00 or higher)

0 | Remains (zeroto avoid <DLE>)

0 No CTG data deleted

1 | CTG data (250 msec ticks) deleted

0 No CTG data inserted

1 Default CTG data (250 msec ticks) inserted

0 Reserved (Monitor OFF)

1 | Reserved (Monitor ON - M135X should set it to 1)

12 DataBlock Overview

Data Blocks

C-Block Data with Heart rates and toco are transmitted 4 times per second (4 timesin each C block). The heart
250ms Sample Rate rateisstored in 11 bits as an unsigned value. The value represents the range from 0 to 300
bpm (beats per minute), where O isidentical to a"blank trace." The heart rate resolution is
0.25 bpm. Toco is stored for transmission in a single byte containing values from 0 to 127
with aresolution of 0.5 (stored as values from 0 to 200). These values are shown in
Table 3-5:

Table3-5 C-Block: Storage of Heart Rate, Toco and FSpO,

Heart Rate Toco FSpO,
bits used 11 8 8
Resolution 0.25 bpm 0.5 1
Digital Values 0... 1200 0..255 0...100
Represented Values 0,25... 300 bpm 0..127 0...100
Interpretation of O blank trace - -

Table 3-6 shows the coding of the first fetal heart rate (HR1).
Table3-6 C-Block HR1 Coding

Bit no. /high byte Bit no. / low byte

6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
X X X X X X 0 X | X X X X X | X

HR1 bits 10 ...0

0 1 FMP: 1= movement; 2, 3 = future (reserved)

0 0 Signa quality red

0 1 Signa quality yellow

1 0 Signal quality green

1 1 Reserved

0 Reserved (set to zero)

Data Block Overview 13

Data Blocks

The coding for the second fetal heart rate (HR2) and the maternal heart rate (MHR) is
identical to that of HR1, except that no fetal movement information is available for these

heart rates, Table 3-7 summarizes these heart rates:

Table3-7 C-Block MHR and HR2 Coding

bit no./ high byte bit no./ low byte

6(5(4|3|2|1|]0|7|6|5|4|3|2|1/|0
O x| X |00 |X|X|X|[X|X]|Xx]O0|[X|X]|Xx]|X

HR2 bits 10 ... 0

0 | 0 | not used, set to zero

Signa Quality (see Table 3-6)

0 | reserved, setto zero

The toco values are stored in single bytes and do not have any additional information
embedded, as shown in Table 3-8:

Table3-8 C-Block Toco Coding

bit no.

71654 |13(2|1]|0
X | X | X[X |X]|Xx|[Xx]X

Toco bits7...0

14 DataBlock Overview

Data Blocks

C-Block HR - Mode The heart rate modes are stored in two bytes. The contents are shown in Table 3-9:

Table3-9 C-Block HR-Mode Coding
Bit no. /High byte Bit no. /Low byte
7 6 5|14 3 2 110|7|6|5|4|3]2]|1
X[X[X]O0O| X | X | X[X]|X|X|X|X]|]0]|]0]|O
Reserved (zero)
MHR mode
1 | inop
0[O0 |0 no transducer
Ol1 |1 MECG
1010 Ext MHR
1(0(1 Reserved
110 Reserved
1(1 (1 unknown mode
HR2 Mode
1 | inop
0O |0 |O no transducer
0 |0 |1 us
0o |1 |0 DECG
1110 Reserved
1 1|1 Unknown mode
HR1 Mode
1 | inop
0|0 0 no transducer
0|0 |1 us
0o |1 |0 DECG
1 |1 0 Reserved
1 1 1 Unknown Mode

Data Block Overview 15

Data Blocks

Table 3-10 summarizes the HR Mode codings.

Table3-10 Heart Rate Modes Summary

Bit Code Description
000 No Transducer
001 Ultrasound (US)
010 DECG
011 MECG
100 External MHR
101 Reserved
110 Reserved
111 Unknown Mode

C-Block Toco Mode Thetoco modeisstored in asingle byte and contains the toco transducer type and mode. See
Table 3-11.

Table3-11 C-Block Toco M ode Coding

7 6 5 4 3 2 1 0
0 0 0 0 X X X 0
Reserved
Toco mode
0 0 0 No transducer
1 0 0 Toco external
1 0 1 IUP
1 1 1 Unknown mode
0 Must be zero to avoid <DLE>
0 Reserved (zero)
0 Reserved (zero)
0 Reserved (zero)

16 DataBlock Overview

C-Block Fetal
Oxygen Saturation

Data Blocks

The FSpO, measurement has a reserved byte in the standard CTG data block with protocol
revision A.01.00. FSpO, is transmitted only with Rev. A.02.00 or later (see page 17). The
use of this byte has been changed to include status information about the parameter.

Table 3-12 C-Block Toco M ode Coding

7 6 5 4 3 2 1 0
X X X X X X X X

FSpO, value 1% resolution. 0 = invalid (don’t print)

0 D6...D0 SpO, valuein percent, 1 unit resolution

1 D6 .. DO future, to be defined

Table 3-13 M1351A/M 1353A FSpO, Resolution

Protocol Revision Revision A.01 Revision A.02
. FSpO, resolution 0.5% D7=0: FSpO, resolution 1%
FSpO, Resolution 2 2
D7=1: reserved

If rev. A.02 isavailable, FSpO, is not transmitted if protocol isin A.01 (see below).

Protocol Revision Change Request 'V’

Note

The fetal monitor is programmed with the FSpO, protocol revision A.01.01. To measure
FSpO, you may need to request a protocol revision update (eg. to A.02.00). The system (eg.
OB TraceVue) can request an update of the fetal monitor protocol revision. The fetal
monitor then changesits protocol to the newest protocol available which may be equal to, or
older than, the requested protocol. If there is anew protocoal, the fetal monitor should move
up to it to measure FSpO.. If thereis no new protocol, it does not matter. See Table 3-13 for
a comparison of FSpO, resolution across FSpO, protocol revisions.

Before starting the new protocol, you should check whether the fetal monitor has accepted
the protocol change. You do this by requesting the ID Code. If the fetal monitor has changed
the protocol revision code, the system can start to communicate with the new protocol. If
not, there will be no response.

Data Block Overview 17

Data Blocks

Table 3-14 V-Block: Protocol Revision Change

‘v’ <bytel> <byte2> <bytel>

char char char char

Example: <DLE><STX>'V''A’2"'0'<DLE><ETX><CRC><CRC>

Bytes 1 through 3 contain the requested protocol revision asin the ID message, for example,
“A20" corresponds to the Series 50 fetal monitor revision “A.02.00.”

Go In Auto Send Mode ‘G’

After power up, the fetal monitor does not automatically send CTG data. There are two ways
of initiating transmission of the CTG data:

1. Request each CTG datablock by sending arequest message with a*C’ as the data byte.
For full transmission of the CTG data, this must be done once per 900 -1100 msec.

2. Letthefeta monitor send the CTG data automatically every second by issuing the ‘G’
command (sending a‘G’ data block without any additional data).

The data code for G-mode (auto send mode) is:
<DLE><STX>G<DLE><ETX><CRC><CRC>

Which mode to use depends on the structure of the requesting software and hardware.
Under normal conditions, G modeis preferred.

Onreceipt of a‘'G’ command, the fetal monitor automatically sendsa‘C’ type block once
per second. Thismodeis canceled by a‘H' command or a‘C’ request.

Halt Automatic CTG Transmission ‘H’

This command resets the auto send mode that was started by the ‘G’ command (see“ Go In
Auto Send Mode ‘G’). This command does not stop transmission of the data blocks for
event marking or nursing notes.

The data code for H-mode (hold-mode) is:

<DLE><STX>H<DLE><ETX><CRC><CRC>

18 DataBlock Overview

Data Blocks

Event Message ‘MM’

Note ‘N’

Every time the event marker button of the Series 50 fetal monitor is pressed, an
asynchronous message "Event Message for Marker" data block is transmitted to the host
system. This also applies with the Remote Event Marker.

The Data Code for the Event Message Marker transmissionis:

<DLE><STX>MM<DLE><ETX><CTC><CRC>

Nursing notes can be entered via a barcode reader which is connected to the fetal monitor
and these notes can be transmitted to the host system for storage purposes. The data code for
nursing notesis:

<DL E><STX>N<nul> <Text 1-28 characters><DL E><ETX><CRC><CRC>

Nursing notes can also be entered viathe host PC and the transmitted to the fetal monitor
and printed on the CTG trace. This function can be used eg. to document the results of
external processing on the CTG trace. The data code for transmission in this direction is:

<DL E><ST X>N<I|D-L><ID><Text><DL E><ETX><CRC><CRC>

where ID-L isthe number of characters used for the <ID> and <Text>. The <ID> isoptional,
and if included it is printed in brackets on the recorder printout.

Thus the following transmission

<DL E><STX>N<02><PC><Thisisanote.>
appears on the trace as

{PC}Thisisanote.

The <ID> and <T ext> cannot exceed 28 characters.

A note starts with a byte that tells how many characters are used for the user identification.
That byte can be zero; this means that the text note immediately follows that byte. Thereis
no additional separator between the user identification and the note text itself.

The Series 50 fetal monitors can annotate up to 3 notes at the same time and can keep an
additional 2 notesin its memory. Notes from the barcode reader have priority over those sent
from the host PC. Depending on paper speed and note length, the host PC may have to wait
several minutes before sending additional notes to be printed.

The fetal monitor ignores the notes in following cases:
= Therecorder is switched off

m Therecorder isout of paper

= Therecorder isin "paper advance mode"

s Theannotation buffer isfull.

Data Block Overview 19

Data Blocks

Failures ‘F’

The N data block has a variable length because the string length can vary from note to note.
Thelength limits are as follows:

m 29 characters for notes sent to the fetal monitor
= 510 characters for notes sent from the fetal monitor.

The length can be determined by the length of the transmitted block, i.e. by the surrounding
of the data block with <DL E><STX> and <DL E><ETX>. Thus, it includes the "user ID
length” byte and the user ID.

In other words, asystem can send up to 28 printable characters (sum of length of user ID and
note text) to the fetal monitor. Additional characters are ignored by the fetal monitor.The
fetal monitor actually sends up to 30 printable characters and does not send an user ID. This
means that the user ID length byteis set to 0.

If the fetal monitor detects a defect, the error coding is reported as 3 character ASCII text.
See the User’s Guide and Service Documentation for the fetal monitor for an explanation of
these codes. To transmit the error code "503," for example, the following sequence is sent:

<DL E><STX>F503<DL E><ET X><CRC><CRC>

If afatal error occurs, the fetal monitor stops an ongoing data transmission. If possible, an
‘F block is sent to the system to report the problem. This behavior uses one of the features of
the link level protocol definition as described in The Data Link Layer on page 7: If a start of
block is recognized before an end of block was received, the incomplete block must be
discarded and the new block accepted.

Problems can occur if atransmitted message isinterrupted directly after the <DL E><ET X>
sequence, that is, within the CRC bytes. These bytes are read without interpreting <DL E>
codes. The fetal monitor should send two arbitrary bytes that do not contain one of the
special characters described in The Data Link Layer on page 7, e.g. two zero-bytes. After
these two bytes a new block can be started and will be safely recognized.

After such afatal error, the fetal monitor restarts and the connection between the feta
monitor and the system must be built again.

20 DataBlock Overview

ID-Code ‘I’

Data Blocks

The fetal monitor | D-Code can be requested by the system and is also used at startup to
identify the fetal monitor.

It contains a 6 character 1D code, the 3 character protocol revision number, the fetal monitor
software revision and fetal monitor serial number. Future enhancements to the protocol are
possible by changing the protocol revision in the ID-code.

Table 3-15 shows the structure of the ‘I’ data block.

Table 3-15 1-Block: Identify Monitor and Protocol

Byte Contents
1..6 ID Code, e.g. “M1350A"
7..9 Protocol revision
10...16 Fetal Monitor Software revision (e.g. A.01.01)
17 ... 26 Serial Number of the Monitor (10 chars, e.g. “3019G10010")

The protocol revision name described in this document is, for example, "A30". Thisis
similar to Philips' recommendation on use of revision numbersfor medical products, except
that the second and third part of that number only has asingle digit and thereareno ‘.’
characters. The corresponding revision is A.03.00.

The fetal monitor software revision is coded to correspond to the HSG nomenclature, for
example, "A.03.00".

Maternal (NIBP) ‘P’

NIBP standsfor Non Invasive Blood Pressure and isa value that is sent in non-regular form,
or with a sampling rate of once per some minutes. NIBP values are transferred in a block of
4 words as shown in Table 3-16. A NIBP va ue of 100 stands for 100 mm/Hg. The heart rate
isthe maternal heart rate. It has aresolution of 0.25 bpm asit is defined for the continuously
measured heart rate from the fetal monitor.

The heart rate may have two special values:

0000y The HR isinvalid, but the device is able to measure the maternal heart rate.

FFFF4 The NIBP-device is not able to measure the HR and thusit isinvaid.

Data Block Overview 21

Data Blocks

Table3-16 P-Block: Maternal Non-Invasive Blood Pressure

Byte Contents

Systolic Blood pressure
Diastolic Blood pressure
Mean Blood pressure
NIBP's Maternal Heart rate

~N o ow e
o o AN

Maternal Temperature ‘T’

This data block contains the maternal temperature in degrees Celsius. See Table 3-17 for the
coding. The temperature has a resolution of 0.1 °C and an offset of 25 °C.

Thus, the values are in the range of 25.0 °C to 50.5 °C.

Table3-17 T-Block: Maternal Temperature

‘T <Temp>

char us8

Maternal Oxygen Saturation ‘S’

The maternal oxygen saturation is coded as described in Table 3-18 for the CTG datablock,
i.e. valuesin the range from 0 to 200 represent values from 0% to 100% with 0.5%
resolution. The block also contains a maternal heart rate that is delivered by the SpO,

device. This heart rate has aresolution of 0.25 bpm as it is defined for the C-datablock and
NIBP-datablock (see also the previous section for an explanation of the values 0000 and

FFFFy).

Table 3-18 S-Block: Maternal Oxygen Saturation

‘'S <Oxygen Saturation> <Sp0O,’'s Maternal HR>

char us8 u_16

22 DataBlock Overview

Troubleshooting

Troubleshooting

Time Synchronization

A “jitter” problem may occur if you are using the OBM S monitor in request mode, if the
clock governing the incoming CTG request and the fetal monitor’sinternal clock are not
synchronous. It depends on the accuracy of the spacein time between two incoming CTG
reguests. In the worst case, at every clock tick datawould be deleted and inserted in
aternation. To avoid this, the accuracy of the time between two requests must be specified
as described below:

= Incoming CTG requests at the fetal monitor must arrive once per second to receive
all the data. The time between two requests must not exceed 1100 msec and must
not be less than 900ms.

s Thefeta monitor must have a buffer for the internal CTG data (with a sample rate
of 4 values per second) to delay the insertion/deletion process. This buffer should
hold data of at least 500 msec, i.e. two samples. If insertions are necessary, they can
be done using the additionally buffered data, and no dummy data needs to be
created. For deletions there is no change in the algorithm.

This additional buffer can cause an additional delay of the CTG data of 500 msec.

Data Block Overview 23

Troubleshooting

24 DataBlock Overview

Introduction

4
The CRC Mechanism

The term CRC stands for "Cyclic Redundancy Check.” Thisis achecksum that is appended
to adatablock to detect errorsin the transmission. The checksum given below is provided as
an example only; it is taken from the literature listed in the footnote below. 1t is neither
guaranteed nor supported by Philips.

Using a checksum to detect errors

Using this checksum, the following types of errors can be detected®:
= 100% of single-bit errors

= 100% of double-bit errors

= 100% of odd-numbered errors

= 100% of burst errors, where the burst is shorter than 16 bits

n 99.9969% of burst errors of exactly 17 bits

= 99.9984% of all other burst errors.

The CRC is calculated using a polynomial division (the CRC is the remainder of that). The
polynomial used is the same as that defined by CCITT?:

The information bits, taken together, correspond to the coefficients of a message polynomial
having terms from X"™(n = total number of bitsin a block or sequence) down to X6, This
polynomial is divided, modulus 2, by the generating polynomial X 16+X1%+X5+1. The check

bits correspond to the coefficients of the term X° to X° in the remainder polynomial found
at the completion of this division.

Thispolynomial iswidely used, e.g. inthe XMODEM and HDL C/SDL C protocols. This 16-
bit remainder is the CRC-word appended to a message. There are two ways to check the
message for correctness:

= Caculate the CRC for the message and compare the result with the appended CRC.
The result must be equal.

m Calculate the CRC over the complete message including the CRC sent with that
message. The result must be zer o!

1. Tannenbaum, Andrew S., Computer Networks, Prentice-Hall, 1981.
2. The CCITT Red Book, Volume V11, International Telecommunications Union,
Geneva, 1986. Recommendation V.41, "Code-Independent Error Control System."

TheCRC Mechanism 25

Using a checksum to detect errors

The CRC creation and check can be efficiently carried out using alookup table. The
following lists the two functions used to create that lookup table and to calculate a CRC
using the table:

IR AR R R EE]

* crcfuncs.c

* This nodul e contains the functions nk_crctbl to create a CRC | ookup

* table and crcupdate to calculate a CRC. These functions are |listed and

* explained in: Joe Canpbell: C Programmer’s Guide to Serial Conmmunications,
* Howard W Sans & Conpany, 1987

* This inplenmentation is a slightly nodification of that publication

LA EEEREEREEEEEEEEEEEEERERY

#i ncl ude <stdlib. h>

static unsigned short crctab[256];/* The CRC | ookup table */

#defi ne GENERATE_POLYNOM AL 0x1021/* The CCITT pol ynom al */

o e e e e e e eiiaao
* crcupdate (unsigned short data, --- new data to be added to CRC

* unsi gned short *accum --- storage of ol d/ new CRC

*)

*/

voi d crcupdate (unsigned short data, unsigned short *accum)

{
*accum = (*accum << 8) ~ crctab[(*accum >> 8) ~ data];
}
o e e e e e e e eeeeeiiaao
* crchware (unsigned short data, --- data to be polynom al divided
* unsi gned short poly, --- polynom al divisor
* unsi gned short accum --- old (preset) CRC val ue
*/

26 TheCRC Mechanism

Using a checksum to detect errors

static unsigned short crchware (unsigned short data,
unsi gned short poly,

unsi gned short accum)

{
int i;
data <<= 8§; /* Data to high byte */
for (i=8; i>0; i--)
{
if ((data » accun) & 0x8000) /* if neb of (data XOR accun) is TRUE
*/
accum = (accum << 1) ~ poly; [/* shift and subtract poly */
el se accum <<= 1; /* otherw se, transparent shift */
data <<= 1, /* move up next bit for XOR */
}
return accum
}
| o o o e s
* mk_crctbl () --- Creates / fills the crctab table
*/

void nmk_crcthl (void)

{

int i;

for (i=0; i<256; ++i)
{
/* Fill the table with CRCs of values */

crctab[i] = crchware (i, GENERATE_POLYNOM AL, 0);

The CRC Mechanism 27

Using a checksum to detect errors

The function mk_crctb must be called first to initialize the CRC table crc_tab. The CRC
for adatablock can be achieved by subsequently using the crcupdate function for each byte
of the data block. For the first byte, the accum variable must have the value 0 (zero). The
following is an example of the usage for that module;

static void testcrc (void)

{

unsi gned short crc;

int i;

char *message = “Check this nessage!”;

mk_crctbl (); /* This nust be called only once in an application */
crc = 0; /* Initialize the CRC value with zero */

for (i=0; i<strlen(nessage); ++i)

{

crcupdate (nmessage[i], &crc);

printf (“Message=<¥%>, CRC=%94x\n”, nessage, crc);

When running this program, the result should be:

M essage=<Check this message!>, CRC=9e8f

28 The CRC Mechanism

5
Programming Example

Digital data exchange example

This chapter contains a programming example to demonstrate the digital data exchange
between the fetal monitor and a PC. This example program is for demonstration purposes
only. assumes no responsibility for the contents, application or reliability of this program
listing.

/**

* Program PCDEMO Rev. A. 01.01

* CONTENTS:

* Denpprogram for digital-PC communi cati on between ML35X and a PC

* The connected Mnitor is set to Auto Send Mbde and the inconing data
* is displayed on the screen. Only the | atest sanples are displayed

* The serial port can be selected in the conmandline by entering

*

* PCdermp /1..4

* Conpi | i ng

* Thi s exanpl e program has been conpiled with a M5-C 6.0 conpiler (or
equi val ent)

* usi ng the nedi um nenory nodel

* Conmmandl i ne for conpiling

*

* cl /AM/QO /Gs pcdenp.c conctrl.lib graphics.lib

*

* An addi tional non standard Clibrary is used for serial comunica-
* tion routines. (mconctr.lib)

* If you don't want to use this library, you should replace the

* functions InitCom ResetCom WiteCom and ReadCom and renove

* the line #include <conttrl.h> and replace it with an equivalent.

*

LA R EEEREEEY]

/* redefine data types for readability */
#define u_8 unsi gned char /* one byte */

#define u_16 unsi gned short /* one word */

#define i _8 char

Programming Example 29

Digital data exchange example

#define i_16 short

/%= SYSTEM | NCLUDES- - - - - - - - - - s oo oo o e e e */
#i ncl ude <stdio. h>
#i nclude <string. h>
#i ncl ude <coni o. h>
#i ncl ude <graph. h>

#i ncl ude "conctrl.h" /* Header for mconctr.lib library */

[*-GLOBAL FUNCTI ONS- - - - - - - oo oo oo oo */
u_16 CRC(u_16 Data);

voi d UpdateCRC(u_8 c, u_16 *chks);

u_16 DI RxD(u_8 *dbuff,u_16 dlen, u_8 byte);

u_16 DI I TxD(u_8 *dbuff,u_8 *pbuff, u_16 len);

u_16 InitPort(void);

u_16 ReadPort(u_8 *Buffer);

u_16 WitePort(u_8 *Buffer, u_16 Nunber);

[*-GLOBAL VARI ABLES- - - - - - - - o oo o e e o */
static u_8 Port = 0;/* nunber of the serialport 0=COML 1=COMR ... */
/ *- CONSTANTS (DEFI NES) - = - == == == == s m o m e e e e e e e e e e e e e e e oo */

/* Ascii characters used for package framing */
#def i ne DLE 0x10
#def i ne STX 0x02
#def i ne ETX 0x03

#def i ne SYN 0x16

/* Internal states for the receiving state machine */
#define RXD_WAI TDLE 0
#def i ne RXD_WAI TSTX 1
#defi ne RXD_DATA 2
#def i ne RXD DLE 3
#defi ne RXD_WAI TCRC1 4

#define RXD_WAI TCRC2 5

30 Programming Example

Digital data exchange example

/* The CCITT pol ynom al */

#def i ne GENERATE_POLYNOM AL 0x1021

IR AR R EEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEREEEEEE]

* FUNCTI ON: Savebyte

R R R R R O O R R
* DESCRI PTI ON:

* Saves a byte to a buffer

ER R R R R R R R R R R R kS kS R R S S S R

* | NPUT/ QUTPUT PARAMETERS

* Name Type ilo Comment

* *p u_8 i poi nter to bufferbase

* o *rwpp u_8 ilo wor k poi nter

* bytesize u_16 i size of buffer

* byte u_8 i data to be stored in buffer
* return i 16 o 1if buffer full, else 0

T R I Iy
static i_16 Savebyte(u_8 *p, u_8 **wpp, u_16 bytesize, u_8 bhyte)
{
/* Save byte in buffer and increment work ptr */
**wpp = byte;
*wpp += 1;
/* check if buffer is full */
if((u_16)(*wpp - p) >= bytesize)
return(l); /* The currently used buffer is full */
el se
return(0);

} /* end SaveByte */

[K Kk kK ok ok ok ok Kk ok ok kK kR ok kR Rk Rk kR R Rk ok ok kR R Rk kR kR R Rk ok ok ok ok Rk ok kR ok kR ok k k ok ok ok ok x

* FUNCTI ON: CRC

R R R R R EEEEEEEEEEEEEEEEEEEEESEEEEE IR EEEEEEEEEEEEEEEEEEEEEEES

* DESCRI PTI ON:

* One step of calculating the crc

R R R R R R R R R R R R R

Programming Example 31

Digital data exchange example

* | NPUT/ QUTPUT PARAMETERS

* Name Type ilo Coment

K e e e e e e e e e e e e e - - * %
* Dat a u_16 i data byte

* return u_16 o] result of calculation

**/
u_16 CRC(u_16 Data)

{
u_16 Accu = 0;

i_16 i;
Dat a <<=8;
for(i=8; i>0; i--)

{
i f((Data™ Accu) & 0x8000)
Accu = (Accu << 1) ~ GENERATE_POLYNOM AL ;
el se
Accu <<= 1;
Data <<= 1;
} /* end for i ... */
return(Accu);

} /* end CRC */

R KKK Kk ok ok ok k ok ok ok ok ok Rk kK ok kR Rk kK ok ok ok Rk ok ok ok R R Rk k ok kR R Rk k ok ok ok R Xk k ok ok ok Rk kk ok ok kR ok ok ok ok kK x

* FUNCTI ON: Updat eCRC

R R R R R R R R R R R R R R R Rk S R R kS R S
* DESCRI PTI ON:

* Updates the CRC byte by byte.

R R R R R R R R R R R

* | NPUT/ QUTPUT PARAMETERS

* Name Type ilo Comment

K e e e e e e e e e e e e e e - - * %
* C u_8 i character value to be added to crc
* *chks u_16 ilo poi nter to checksum storage

LEEEE AR EEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEY]

voi d UpdateCRC(u_8 c, u_16 *chks)

32 Programming Example

Digital data exchange example

{
u_16 bcc;

bcc = *chks;

bcc (bcc << 8) " CRC(((bcc >> 8) ~ c) & Oxff) ;
*chks = bcc;

} /* end Updat eCRC */

/**

* FUNCTI ON: DI | RxD

N L T ooy
* DESCRI PTI ON:

* Unpacks a received datablock byte by byte. If a received nessage is

* conplete its length is returned. If the nmessage is not conplete O is
* returned

R R R R R R R R R R R R R

* | NPUT/ QUTPUT PARAMETERS

* Nane Type ilo Conmment

K il *%
* *dbuf f u_8 i destinati on pointer

* dlen u_16 i max | ength of destination buffer

* byte u_8 i recei ved databyte

* return u_16 o] length of received databl ock

**/
u_16 DI RxD(u_8 *dbuff,u_16 dlen, u_8 byte)

{
static u_8 state = RXD_WAI TDLE;

static u_16 crc 0;
static u_8 *wp = 0;

u_16 I

switch(state)

{
case RXD WAI TDLE: /* wait for DLE */
if (byte==DLE)

{

Programming Example 33

Digital data exchange example

34

case

case

Programming Example

state = RXD_WAI TSTX;
Updat eCRC(byt e, &crc);
}

br eak;

RXD_WAI TSTX: /* wait for start of text (STX) */
if (byte==STX)
{

state = RXD_DATA,

Updat eCRC(byt e, &crc);

wp = dbuff; /* Set work ptr to start of buffer */

el se

st at e=RXD_WAI TDLE;
crc = 0;
}

br eak;

RXD_DATA: /* read data */
/* Cal c checksum for each byte */

Updat eCRC(byte, &crc);

if(byte == DLE) /* get rid of doubled DLE in data bl ock */
{
state = RXD_DLE;
br eak;
}
el se
{

if(Savebyte(dbuff, &, dlen, byte) > 0)

{
/* The buffer limt is exceeded --> Discharge package */
/* Start over again */
state = RXD WAl TDLE;

br eak;

Digital data exchange example

br eak;

case RXD DLE:
switch (byte)
{
case DLE:
i f(Savebyte(dbuff, &, dlen, byte) > 0)
{
/* The buffer limt is exceeded --> Discharge package */
/* Start over again */
state = RXD_WAI TDLE;
br eak;
}
state = RXD_DATA,
Updat eCRC(byt e, &crc);

br eak;

case ETX
state = RXD_WAI TCRCL,;
Updat eCRC(byt e, &crc);

br eak;

case STX: /* This is already the start of a new package */
crc = 0;
Updat eCRC(DLE, &crc);
Updat eCRC(STX, &crc);
state = RXD_DATA;
wp = dbuff; /* Set work ptr to start of buffer */

br eak;

defaul t:

/* Invalid char after DLE -> Sequence error, discharge package

crc = 0;

Programming Example 35

Digital data exchange example

case

case

state = RXD_WAI TDLE;
br eak;
} 1* switch(byte) */

br eak;

RXD_WAI TCRCL:

/* This byte is treated as the first byte of the checksum */
Updat eCRC(byt e, &crc);

state = RXD_WAI TCRC2;

br eak;
RXD_WAI TCRC2:
/* This byte is treated as the second checksum byte */

Updat eCRC(byt e, &crc);

/* Test crc */

if(crc)

{
/* CRC invalid -> Discharge package, reset crc accu */
crc = 0;
I = 0;

}

el se

{
/* CRC ok */
/* Number of valid bytes in buffer */
I = wp - dbuff;

}

state = RXD WAl TDLE;

return(l);

br eak;

} /* switch(*state) */

return(0);

} /* end

D I RxD */

AR AR R EEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEREEEEEEREEEEEEEEEEEEEEE]

36 Programming Example

Digital data exchange example

* FUNCTI ON: DI | TxD
e
* DESCRI PTI ON:

* A entered databl ock is packed into the datalink |ayer which nmeans

* that a DLE STX is added at the begi nning of the bl ock.

* DLEs in the databl ock are doubl ed.

* A DLE ETX and the crc is appended at the end of the bl ock.

* -> DLE STX Dat aBl ock DLE ETX CRC CRC

ER R R R R R R R R R R R kS kS R R S S S R

* | NPUT/ QUTPUT PARAMETERS

* Name Type ilo Comment

* *dbuf f u_8 i destinati on pointer

* *pbuf f u_8 i source pointer

* len u_16 i nunber of bytes in dbuf
* return u_16 o] I ength of pbuf

**/
u_16 DI I TxD(u_8 *dbuff,u_8 *pbuff, u_16 len)

{

u_8 byte;

u_16 i;

u_16 crc = 0; /* Current CRC value */

u_16 n; /* Index of next free byte in dbuff */

/* Package header */

Updat eCRC(dbuf f [n=0]

DLE, &crc);

Updat eCRC(dbuf f [++n] STX, &crc);
for(i=0; i<len; i++)
{

byte = *pbuf f ++;

Updat eCRC(dbuf f[++n] = byte, &crc);

if(byte == DLE)

Updat eCRC(dbuff[++n] = DLE, &crc);

}
/* Add trailer */

Programming Example 37

Digital data exchange example

38

Updat eCRC(dbuf f[++n] = DLE, &crc);

Updat eCRC(dbuf f[++n] = ETX, &crc);

/* Add CRC */

dbuf f [++n] (u_8)((crc >> 8) & Oxff); /* CRC High byte */

dbuf f [++n]

(u_8)(crc & Oxff); /* Low */
return(++n);
/* Add bl kno for that package */

} /* end DI TXD */

IR AR R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEE

* FUNCTI ON: | ni t Port

R R R R EEEEEEEEEEEEEEEEREEREEEESEEEEEIE IR E R EEEEEEEEEEEEEES

* DESCRI PTI ON:

* Initializes a serialport to
* 1200 Baud/ no parity/8 bit data/l stop bit
* If failed a non zero value is returned, else O.

R R R R R e R R R R R R R

* | NPUT/ QUTPUT PARAMETERS

* Name Type ilo Coment
K e e e e e e e e e e e e e - - * %
* return u_16 o] Oif init OK else non 0

**/
u_16 InitPort(void)
{

return(InitCom(Port, C CHR8| C_STOP1| _C NOPARI TY , C 1200,512,0));

} /* end InitPort */

AR AR R R EEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEREEEEEEEEEEEEEEE]

* FUNCTI ON: ReadPor t

ok kA k ok ok kK ko kK K kR kR Kk kR kR kR Kk kR kR K Kk R kR K Kk R kR K kR kR Kk A kK K
* DESCRI PTI ON:

* Reads a nmessage fromthe RS-422.

* Every byte that is read fromthe interface is checked by the DLL.

* If the routine DIl RxD detects that a nessage is conplete the |ength

* of it is returned. If a nmessage is inconplete 0 is returned.

Programming Example

Digital data exchange example

* If there is no data in the receive buffer the routine ReadCom returns
* 0.

ER R R R R R R R R R R R R R S S kS R R Sk R S S

* | NPUT/ QUTPUT PARAMETERS

* Name Type ilo Comment

K e m e e e m e m e m e e e e e e m e e m e m e —— - * %
* *Buffer u_8 i destinati on pointer

* return u_16 o] I ength of received databl ock

**/
u_16 ReadPort(u_8 *Buffer)

static u_8 RBuffer[512];

u_8 byt e;

u_16 Dat aLen = 0;

/* read data until a nessage is conplete or receive buffer enpty*/
whi | e(ReadCon{ Port, &yte, 1) &&
| (DataLen = DI I RxD(RBuffer, 512, byte)));
/* if a nessage is conplete copy nessage fromreceive buffer to buffer */
if(DatalLen)
mencpy(Buffer, RBuffer,DatalLen);
return(Datalen);

} /* end ReadPort */

/**

* FUNCTI ON: Wit ePort
e
* DESCRI PTI ON:

* Sends data via the DLL and the RS-422. Data is first packaged by

* the routine DI I TxD.

* The packaged data (DLE STX Data DLE ETX CRC CRC) is stored in

* XBuf fer. The nunber of bytes to send is returned by the routine

* Dl | TxD.
e
* | NPUT/ QUTPUT PARANVETERS

* Name Type ilo Comment

Programming Example 39

Digital data exchange example

K el *%
* *Buffer u_8 i source pointer

* Number u_16 i nunmber of databytes to send

* return u_16 o] 0if OKelse non 0O

**/
u_16 WitePort(u_8 *Buffer, u_16 Nunber)

{
u_8 XBuffer[80];

Nunber = DI | TxD(XBuffer, Buffer, Nunber);
return(WiteCon{ Port, XBuffer, Nunber));

} /* end WitePort */

/**

* FUNCTI ON: nai n

R R R O R R
* DESCRI PTI ON:

* mai n program
***/
void main(i_16 argc, u_8 *argv[])

u_8 Data[512]; /* Data buffer */

i_16 i;

_cl earscreen(_GCLEARSCREEN) ;
for(i=1;i<=argc;i++)

if(*argv[i]l=="/") Port =(u_8) (argv[i][1]-49) ;

if(Port >3) Port = 0; /* make sure that no invalid port can be used */
InitPort(); /* init serial port */
_settextposition(1,18);printf("xx****xx REV A. 01.01 R I

_settextposition(2,18); printf("*DEMO PROGRAM for DI A TAL PC | NTERFACE *");

SettetiOSItlon(3’ 18);printf("**");

_settextposition(4,18);printf("* Port COWa active *n
Port+1);

_settextposition(5,18);printf("* Aut o Send Mbde active *");

40 Programming Example

Digital data exchange example

_settextposition(6,18);printf("* Press any key to abort *");
SettetiOSItlon(7’18);printf("**");

_settextposition(8,18);printf("* received data (only latest sanple)

)i
SetteXt pos' tl On(9 18) . pl’l ntf("************************************") .
_settextposition(10,18);printf("* *");

SetteXt pOSItI on(ll 18)- prl ntf("********* **************************")~

WitePort("G',1); /* start Auto Send Mode */
while ('kbhit())
if(ReadPort(Data)) /* if a nessage is conplete */
if(*Data == 'C) /* check if it is a CBlock */
{
_settextposition(10, 20);
printf("HRL %6. 2f HR2 9. 2f TOCO %. 2f ",
(float)((Data[4]+((Data[3]&0x07)<<8)) /4), [/* heartrate 1 */
(float)((Data[12]+((Data[11] &0x07)<<8)) /4),/* heartrate 2 */
(float)(Data[27]/2)); /* toco */
Y} I* endif () */
WitePort ("H',1); /* stop Auto Send Mode */
i =0; whi l e(i ++); /* wait ... */
_settextposition(13,18);printf("Programaborted by user \n");
Reset Con(Port); /* reset serial port */

} /* end main */

Programming Example 41

Digital data exchange example

42 Programming Example

A
Glossary

Antepartum: Occurring before birth.
Artifact: Irregularities on afetal monitor trace caused e.g. by poor signal reception.

Coincidence: Describes the detection of identical heartrates. If two heartrates,e.g. maternal
and first fetal heartrates, have the same values over a defined time, then these two heartrates
are said to coincide. This can happen for example if both transducers are picking up the
same heartrate signal.

ECG: Electrocardiogram.
DECG: Direct Electrocardiogram.

DECG Arrhythmia Logic: This enables or disables a postprocessor of the acquisitionin
the fetal monitor that suppresses artifacts (see above). If the patient might have arrhythmia,
the logic function should be disable to enable arrhythmia monitoring.

External MHR: Input by an external device, e.g. an external SpO, device.

External Parameter: The Series 50 fetal monitors and also the HP 8040 fetal monitors
have an external parameter input. The external signal produced is printed on the strip chart
either on the heartrate or the toco grid.

Fetal Movement: See FMP.
FHR: Fetal Heart Rate.

FMP: Fetal Movement Profile: When fetal movement is detected by a Series 50 fetal
monitor, a box is printed on the upper part of the Toco grid on the fetal trace.

I ntrapartum: Occurring during birth.
| UP: Intrauterine Pressure

NOP: Inoperable/ no operation.
MECG: Maternal Electrocardiogram.

NIBP: Noninvasive Blood Pressure. That has three values: systolic pressure, diastolic
pressure, and mean pressure. The mean valuesis calculated so that it splitsthe areaunder the
pressure curves exactly half by half. The mean value is not the arithmetic or geometric mean
of the systolic and diastolic pressure.

SpO,: The saturation of oxygen in the blood is given as a percentage value.

Signal Quality: Thisis represented by the colored output on the front panel of the fetal
monitor. Thereisared, green, and yellow lamp to show a good or bad signal quality. This
can help the nurse to position the transducers to optimize the signal reception.

Toco: Toco transducer, a pressure-sensing device used to record uterine activity

Ultrasound (US): Use of high-frequency sound to measure movement, for example closure
of fetal heart valves, to monitor fetal heart rate.

A-1

A-2

	Hardware Configuration
	About This Guide
	Introduction
	Hardware Configuration
	Interface Connections
	RS232 Interface
	M1351A/M1353A
	M1350 A/B/C

	RS422 Interface
	M1351A/M1353A and M1350 A/B/C

	Communication Summary

	Fetal Monitor Connection
	Introduction
	The Data Link Layer
	Special Function Characters

	The Application Layer

	Data Block Overview
	Introduction
	Data Block Overview
	Data Blocks
	Request Data Block ‘?’
	CTG Data Block ‘C’
	C-Block Status Word
	C-Block Data with 250ms Sample Rate
	C-Block HR - Mode
	C-Block Toco Mode
	C-Block Fetal Oxygen Saturation

	Protocol Revision Change Request ‘V’
	Go In Auto Send Mode ‘G’
	Halt Automatic CTG Transmission ‘H’
	Event Message ‘MM’
	Note ‘N’
	Failures ‘F’
	ID-Code ‘I’
	Maternal (NIBP) ‘P’
	Maternal Temperature ‘T’
	Maternal Oxygen Saturation ‘S’

	Troubleshooting
	Time Synchronization

	The CRC Mechanism
	Introduction
	Using a checksum to detect errors

	Programming Example
	Digital data exchange example

